Categories
exam readings knowledge work politics science communication science studies

Exam readings: Science in the knowledge economy

These are both chapters from Communicating Science in Social Contexts: New Models, New Practices that put science communication into a very wide context of societal changes.

In “Representation and Deliberation: New Perspectives on Communication Among Actors in Science and Technology Innovation,” Giuseppe Pellegrini wants to reform the way democracy operates:

Summary: Pellegrini takes on the relationships between scientific experts, business, political institutions, and the public, and suggests that new governance models are needed for developing technical-scientific fields (e.g., nano, biotech, communications). He contrasts representative democracy (public delegates decision-making to political class, they delegate it to scientific & business experts) to deliberative democracy (participation of all interested parties.) In recent years, doubt has been cast on both scientific experts as a community of objective decision makers (e.g., scientists going into business), and on political institutions’ ability to regulate business or even remain functional (e.g., globalization, collapse of the social contract). This has been facilitated by: greater communication, the speed of scientific and technological changes in recent years, the end of consequence-free perception of progress, and a new appreciation of the uncertainty inherent in science (facilitated by a conflict-driven media.) Pellegrini suggests a new view of rights of citizens, which would include access to opportunities to participate in scientific social decision-making, and access to information about government workings (and ability to communicate directly with decision-makers). This would expand the deliberative aspects of democracy past traditional voting, or delegation of decision-making powers to elites.

Comments: Pellegrini is not clear about who will guarantee or fund these new communication rights of citizens, or guarantee that vested interests will not attempt to manipulate the system via traditional advertising, etc., (but acknowledges these are valid criticisms), and it’s also unclear how decisions will actually be made (he’s explicitly advocating more open discussion about science-tech-society issues, not decision-making.) He does mention that not all participants’ views should be equal (so still a role for experts). Mention of “powerful and authoritative scientists” making society’s decisions is ironic, given the recent state of political discourse in the U.S.

With somewhat related themes, Bernard Schiele’s “On and About the Deficit Model in an Age of Free Flow” redefines scientific literacy in the “knowledge economy.”

Summary: Schiele’s view is that science has become integrated into the “information society” to such an extent that the deficit model of communication is no longer useful. Science began by openly communicating in the vernacular, but increasing specialization and the rise of professional science communicating media separated science “producers” from “consumers.” The deficit model assumed that both science literacy and political literacy were necessary for citizens to participate in sci-tech decision-making processes. Shiele believes that the boundary between science and non-science is becoming blurred (e.g., psychology), and that the communication process is now about fostering multiple connections between science and society. He connects these changes to the knowledge economy: universities collaborating with industry (and communicating results to public), research is becoming more applied (problem-solving and products), and scientists are also becoming replaceable knowledge workers. The public now feels able to comment on the directions research takes; non anti-science, but feels that “progress” is not the answer.

Comments: I’m not sure to what extent Schiele’s characterization of scientists as replaceable knowledge workers is accurate. He seems to equate expertise with the ability to marshal (publicly available) knowledge at need and adapt to different contexts (so everyone could potentially succeed in any field); I don’t think this knowledge flexibility necessarily maps to understanding how knowledge is created & interpreted within different domains. He also seems to be defining science literacy as a way of thinking about science and scientific culture, and assuming that the public is educated about science/scientific institutions (as cultural actors; not about how the scientific process works.)

Links to: Shamos (very different definition of scientific literacy)

One reply on “Exam readings: Science in the knowledge economy”

Leave a Reply

Your email address will not be published. Required fields are marked *